
Tailsitter Localization Using AprilTag and the Kalman Filter
for Aerial Docking

by

Abdurrahman Ayyaz Qureshi

Supervisor: Jonathan Kelly
April 2019

This page was intentionally left blank.

University of Toronto

ESC499Y1 Engineering Science Thesis

Tailsitter Localization Using
AprilTag and the Kalman Filter

for Aerial Docking

Author:

Abdurrahman Qureshi

Supervisor:

Professor Jonathan Kelly

April 2019

Abstract

A tailsitter is a type of air vehicle that is characterized as a VTOL (Vertical Takeoff
Landing) and has two flight modes: hover and fixed wing. It is susceptible to dis-
turbances in hover mode, so one conceived solution was to aerially dock two of them
to form a quadcopter-like configuration that is inherently more stable and where the
motors can be actuated to better reject disturbances. One major requirement for
aerial docking is to design and implement a localization method so that two tailsit-
ters can identify each other and maneuver into docking position. This project uses
the Hummingbird tailsitter platform developed at the University of Toronto, as well
as the visual fiduciary system called AprilTag. AprilTag targets and a camera are
added to the Hummingbird gazebo model. Then, a Kalman Filter is implemented
to filter the pose measurements. The ability to accurately localize in simulation is
shown, and particularly the Kalman filter improves the orientation estimate by cut-
ting down noise by a factor of 2. Next, the mechanical design of the Hummingbird is
modified using Solidworks to support an onboard computer, the Odroid XU4, and a
camera, the Intel Realsense R200. New parts are 3-D printed/laser-cut and integrated
onto the Hummingbird, and the controllers are subsequently re-tuned to achieve a
stable hover. A mock tailsitter is then built with Apriltag targets on the side, and
localization is attempted. It is shown that the Kalman filter actually degrades the
localization estimate. The primary achievements of this thesis are a) adding vision
capabilities to the Hummingbird and b) integrated the AprilTag software. By testing
localization and filtering on hardware, important insights are gained and next-steps
are suggested.

i

Acknowledgements

First and foremost, I would like to thank Professor Jonathan Kelly for taking me
as his thesis student and for his guidance throughout the year. Apart from the
technical guidance, I really appreciated his understanding when I failed in assembling
the Hummingbird PCB, and also his great sense of humour during our meetings.

Next, I give my thanks to Mike Zhang, Yilun Wu and Jason Wang. Mike Zhang
gave up his precious time to help me run multiple experiments and provided thought-
ful discussion. Yilun Wu made this thesis project possible and is responsible for cre-
ating the Hummingbird platform on which this project builds. Jason Wang helped
modify the hummingbird gazebo model and integrate AprilTag.

Lastly, I want to thank the entire Faculty of Applied Science and Engineering,
and specifically the Division of Engineering Science, for their tireless efforts in the
background to create a fantastic experience and to ensure the future success of all
their students.

ii

Contents

1 Introduction 1

2 Feasibility of Aerial Docking 3

3 Background 5
3.1 Hummingbird Platform . 5
3.2 Visual Fiduciary Systems . 7

3.2.1 ARTag . 9
3.2.2 AprilTag . 9
3.2.3 CALTag . 10
3.2.4 ARTag vs AprilTag vs CALTag 11

3.3 Kalman Filter . 12
3.3.1 Extended Kalman Filter . 12
3.3.2 Kalman Filter Non-Linear Process/Measurement Noise 14
3.3.3 Kalman Filter Input Noise . 15
3.3.4 Adaptive Kalman Filter . 15

4 Method 16
4.1 Integrating a Visual Fiduciary System: AprilTag 16
4.2 Implementing Kalman Filtering . 17
4.3 Improving the Hummingbird Platform Software Suite 18
4.4 Mechanical Modification of the Hummingbird 19

5 System Modelling 21
5.1 System Parameterization . 21
5.2 Process Model . 22
5.3 Measurement Model . 24

6 Results 25

7 Discussion 27
7.1 Performance in Simulation . 27
7.2 Performance on Hardware . 27
7.3 Model Deficiencies . 28
7.4 Next Steps . 29

8 Conclusion 30

A Noise Covariance Matrices 33

B Pose Estimate: Simulated Approach Trajectory 34

C Pose Estimate: 0.5m Hover 35

D Pose Estimate: 1m Hover 36

iii

List of Figures

1 Tailsitter diagram . 1
2 Tailsitter actuation . 1
3 Google Wing reportedly experimented with using tailsitters for parcel

delivery. The project was cancelled due to tailsitter instability. 2
4 Concept rendering of final docked configuration. 3
5 Tryphons and ARtag targets used for localization. 4
6 Distributed flight array developed at ETH Zurich by Oung et al. . . . 5
7 The hummingbird tailsitter . 5
8 The PX4 embedded middleware architecture. 6
9 End-to-End Communication Architecture from user level ROS node

running on an offboard computer to uOrb. 6
10 The PX4 tailsitter model for gazebo. 7
11 PX4 Gazebo Intercommunication . 8
12 ARToolkit target and an ARTag target 9
13 AprilTag target . 10
14 CALTag target . 11
15 Rotations tested by Sagitov et al. 12
16 Tailsitter gazebo model before and after modification 17
17 (Left) RVIZ showing tag pose detections. (Right) Gazebo simulation. 18
18 Front and back views of the Solidworks assembly of modified Hum-

mingbird center. 20
19 Modified mechanical design of tailsitter with mounted Odroid XU4 and

realsense camera. 20
20 Mock tailsitter to test localization estimation. 20
21 Point mass model of the partner and base link tailsitters. The partner

tailsitter is modelled as an inertial frame. The gravity vector is assumed
to point in the direction of −z0. 21

22 Tag Measurement . 25
23 Taking pose measurements while the tailsitter hovers infront. 27
24 TF2 frames tree visualization. camera to bundle1 is output at 24Hz. . 28

iv

1 Introduction

A tailsitter is an air vehicle that is characterized as VTOL (Verticle Take Off Landing).

A labelled diagram of the mechanical structure and important components is shown

in figure 1. At the top are two propellers connected to two high RPM brushless

motors, following by the main body which also acts as wings, and then elevons which

are connected to two servos.

Figure 1: Tailsitter diagram

The two motors at the top are used to produce thrust along the body z-axis and to

produce a rolling moment by through differential thrust as shown in figure 1(c). The

elevons can be used to produce a yaw moment and pitch moment as shown in figure

2(a) and (c) respectively. Once the tailsitter has taken off and is hovering, the elevons

can be used to produce a pitch moment and rotate the tailsitter 90 degrees and it

flies like a traditional fixed wing aircraft; the two rotors generate forward thrust while

airflow around the wings generates upward thrust like that in traditional airplanes.

(a) Body Yaw Actuation
(b) Body Pitch Actuation

(c) Body Roll Actuation

Figure 2: Tailsitter actuation

Tailsitter vehicles combine the advantages of quadcopters and fixed-wing aircrafts.

Because tailsitters are a type of VTOL, they do not require long runways which can

1

be expensive to build and maintain. At the same time, forward flight is much more

energy efficient than quadcopters which must run 4 motors at very high speeds all the

time. This has lead companies such as Google Wing to experiment with tailsitters for

parcel delivery [1]. The inherent tradeoff though is that in hover mode, the tailsitter

is susceptible to disturbances about the y-axis. This is easy to see by considering the

moment about the y axis, τy = Iyyαy. Because the tailsitter is relatively thin, Iyy is

small, which means any disturbance force will result in a large angular acceleration

about the y-axis. Google Wing reportedly cancelled the project due to tailsitter

instability [2].

Figure 3: Google Wing reportedly experimented with using tailsitters for parcel de-
livery. The project was cancelled due to tailsitter instability.

One conceived solution to this problem is aerial-docking. In this context, aerial

docking is defined as connecting two tailsitters mid-air to form a rigid-body. Aerial-

docking has two benefits. First, it increases the moment of inertia about the y-axis

making the system inherently more “stabilizable.” Second, the docked formation will

have four high rpm motors in a quadcopter-like configuration which it can actuate to

better reject disturbances.

The goal of aerial docking can broken down into a loosely ordered series of steps:

1. Design a docking mechanism

2. Design a localization method ←− (scope of this project)

3. Design distributed control scheme

2

Figure 4: Concept rendering of final docked configuration.

4. Build two tail sitters

5. Maneuver the tailsitters to docking position and dock

First, some sort of rigid docking/connection mechanism that can be programat-

ically activated needs to be designed. Second, a localization system needs to be

designed so that the tailsitters can recognize and maneuver relative to each other to

move to docking positions. Third, a distributed control scheme needs to be imple-

mented so that the docked tailsitter configuration can maintain hover flight. Next,

two tailsitters need to be built. Finally, all of these systems need to be integrated; the

tailsitters need to be launched, localize their positions, maneuver to docking position,

dock, and switch to the distributed control scheme.

The scope of this project is the design, implementation and simulation of a lo-

calization method to achieve goal number 2. The tailsitters should be able to exe-

cute relatively complex trajectories from up to 1m away from each other while still

maintaining a relatively accurate estimate of each other’s position. If this can be

accomplished, feasibility to maneuver to docking position is proven.

2 Feasibility of Aerial Docking

The two big hurdles to aerial docking is the ability to physically maneuver two tail-

sitters into a docking position, and a control strategy to maintain hover flight in a

docked position. To the best of the author’s knowledge, two tailsitters have not been

3

docked in mid-air before, however there have been other docking studies of ground

and air vehicles that can be used to as guidelines for this project.

One example of aerial docking done in simulation is of two cubic blimps by

Abouzakm et al. [3]. These cubic blimps are referred to as “Tryphons” and their

purpose is to produce artistic performances by taking shapes in the air. Abouzakm

et al. use a monocular camera and an ARtag marking system for maneuvering and

aligning the tryphons, and magnets to physically connect the two blimps in place.

Abouzakm et al. breakdown guidance and navigation into two steps: rendezvous and

docking. During the rendezvous phase, the two tryphons come into visual proxim-

ity via some external global localization scheme so that the attached cameras can

detect the ARtags and produce pose estimations. Then, one tryphon, named the

“target tryphon,” is assumed to remain “in perfect regulation at the desired location

throughout the docking process.” The other tryphon maneuvers to align the magnets

attached to each tryphon and bring them close to each other until the magnetic force

becomes great enough to establish a connection.

(a) Tryphon cubic blimps
(b) ARtag marking system targets

Figure 5: Tryphons and ARtag targets used for localization.

A particularly impressive example of distributed control is the distributed flight

array developed at ETH Zurich by Oung et al. [4]. A collection of modules having

only one rotor and incapable of stable flight themselves, docked together on the

ground and achieved a stable hover flight [5]. The pattern of docking was not known

beforehand exactly, but the algorithm was able to adapt and achieve a stable hover.

4

Figure 6: Distributed flight array developed at ETH Zurich by Oung et al.

3 Background

3.1 Hummingbird Platform

This project utilizes the Hummingbird platform which is a tailsitter developed at the

University of Toronto by a previous thesis student, Yilun Wu [6]. Hummingbird is

built ontop of the PX4 open source flight control software [7].

Figure 7: The hummingbird tailsitter

PX4 implements all levels of software from hardware drivers up to the position,

attitude, rate cascaded PID control architecture, which has been customized and

tailored to the Hummingbird to optimize performance. Details of the hardware and

control architecture can be found in the original thesis [6].

For intra-process communication on the embedded computer, PX4 uses the uOrb

messaging middleware, which uses a publish-subscribe communication model. To re-

ceive external messages from an offboard computer, PX4 uses mavlink, which is a

messaging protocol specifically designed for use in drones. In Mavlink, messages are

5

defined in XML, and C serializers, deserializers and message structures are automat-

ically generated. Once the hummingbird receives a data buffer, it deserializes it into

a mavlink message, packs it into a uOrb message, and publishes it to any subscribed

processes. The full middleware architecture is shown in figure 8.

Figure 8: The PX4 embedded middleware architecture.

There are several tools available to send mavlink messages to the hummingbird.

In this project, ROS is extensively used, so it is natural to implement a method

of converting ROS messages to mavlink messages and sending them automatically.

This is implemented in a convenient ROS package called ”mavros” [8]. The full

communication architecture is shown in figure 9.

Figure 9: End-to-End Communication Architecture from user level ROS node running
on an offboard computer to uOrb.

PX4 also comes built with support for a high fidelity Software-In-The-Loop (SITL)

simulation for fast prototyping and regression testing. One of the simulators it sup-

ports is Gazebo, which has a robust physics engine and can be used to accurately

6

model robot dynamics and complicated environments. As part of the original thesis,

a gazebo plugin was written that implements a theoretical model of the dynamics

with experimentally determined parameters [6]. The PX4 tailsitter model is shown

in figure 10.

Figure 10: The PX4 tailsitter model for gazebo.

When the simulation is started, PX4 is loaded with “simulator mavlink.cpp”

which sends actuator inputs to the simulation and receives sensor and state data

from the simulation over UDP port 14560. This is shown in figure 11.

3.2 Visual Fiduciary Systems

This section summarizes three prevalent visual fiduciary systems, which are systems

where an object is placed in a camera image for use as a point of reference of mea-

surement. Originally, visual fiduciary systems were developed for Augmented Reality

(AR) applications, but since then they’ve been applied to many areas including cal-

ibration, robotic docking, and more. This section compares AprilTag, ARTag and

CALTag. In each of these systems, “targets” are placed on objects that need to be

tracked. Given a camera image of the target and the physical dimensions of the target,

software can compute the position and orientation of the camera viewing the target,

relative to the target. These fiduciary systems are also very low-cost localization

solutions because targets can be printed from ordinary printers.

7

(a) The PX4 SITL architecture overview.

(b) Messages exchanged between Gazebo and PX4.

Figure 11: PX4 Gazebo Intercommunication

8

3.2.1 ARTag

ARTag was developed by Mark Fiala and it is a successor to the out-dated ARToolKit

[9]. To understand ARTag, it is useful to start with ARToolKit. ARToolKit targets

had arbitrary images inside black boxes which were matched against a database at

runtime. As the database grew, computation costs increased and false matches in-

creased. ARTag switches to 2D binary barcode patterns which encodes a bit code

(e.g. 16 bits) so that an image can be decoded and matched must faster to the known

deployed bit codes. In practice, while decoding an image to the bit code, a few bits

are incorrect so that the code doesn’t match exactly, but if the number of incorrect

bits is within some tolerance (typically up to 2), the algorithm outputs a positive

match. An ARToolKit target and ARTag target is shown in figure 12.

(a) ARToolKit (b) ARTag

Figure 12: ARToolkit target and an ARTag target

3.2.2 AprilTag

AprilTag is a visual fiducial system originally developed at the University of Michigan

Robotics Laboratory by John Wang and Professor Edwin Olson [10] [11]. AprilTag

builds on ARTag and it has gone through two iterations: AprilTag1 and AprilTag2.

AprilTag1 introduced a more robust quad detection algorithm by using low pass

filtering, image gradients, and line fitting to find squares in an image. It’s other

major change improvement over ARTag was the use of a lexicode system to ensure

that deployed bit codes are not too similar to each other, and even to itself under

90, 180, and 270 degree rotations. The measure of similarity used is “hamming

9

distance” which counts the number of positions that are different between two equal

length strings. For example, if two codes are only different in one bit, their hamming

distance is one. If the number of allowable bit errors is 1 or 2, this could lead to

a false detection. AprilTag is highly resilient to these types of false positives. An

AprilTag target is shown in figure 13.

Figure 13: AprilTag target

AprilTag2 improves on AprilTag1 algorithmically. From user feedback, the authors

of AprilTag1 understood that tag occlusion was not a significant concern and in

practice, most users don’t allow any bit errors anyway. At the cost of less robustness

to occlusion, AprilTag2 is computationally much faster due to a faster tag boundary

segmentation method and much faster decoding and matching.

3.2.3 CALTag

CALTag (CALibration Tag) was developed at the University of British Columbia

by Atcheson et al. specifically for camera calibration purposes [12]. CALTag has an

added capability of error detection (but not error correction) by including a checksum

as part of the bit code that is encoded into the 2D barcode pattern. In practice, for

reasonable sized targets, this severely reduces the number of available targets that

can be generated. The targets are generated by creating an MxN grid similar to a

checkerboard where each cell has a strictly white or black border around it. The

10

CALTag software decodes it in the four possible orientation and uses the checksum

to verify the correct orientation. An example is shown in figure 14.

Figure 14: CALTag target

The major advantage of CALTag is that by creating these large grids, there are

many more calibration points (the corners of the checkerboard) that can be used as

reference points.

3.2.4 ARTag vs AprilTag vs CALTag

AprilTag2 is a newer technology that directly builds on top of and has a lot of ad-

vantages over ARTag. Sagitov et al. directly compared the three in a number of

configurations including partial occlusion, and rotations about the three axises (see

figure 15) [13]. AprilTag2 and CALTag were robust against all normal and lateral

rotations up to 65 degrees, while some ARTag targets failed at rotations greater than

10 degrees. AprilTag and ARTag were both sensitive to occlusion while CALTag was

robust.

But while CALTag outperforms AprilTags in detection on occluded targets, oc-

clusion is not a big concern in this project. CALTag is also quite a lot slower than

AprilTag2. It’s benchmark was on a minimum of 2 megapixel images on which it

took approximately 2 seconds, which corresponds to a rate of 0.5Hz. On the other

hands, without modification, AprilTag2 outputs detections at a rate of 3Hz. Another

advantage of AprilTag is that a ROS wrapper around the AprilTag software is readily

available as a package online [14] [15]. Given camera information and camera images,

11

Figure 15: Rotations tested by Sagitov et al.

tag detections are published as transforms on the /tf topic. This allows the ability to

exploit the ROS ecosystem.

3.3 Kalman Filter

The kalman filter is a recursive filter used to calculate optimal state estimates of a

linear system by combining model estimates with output measurements, both contain-

ing stochastic, zero-mean gaussian noise [16]. The extended kalman filter generalizes

this for non-linear systems by repeatedly linearizing the system at previous state es-

timates to estimate model noise propogation. It is not guaranteed to be optimal, but

in practice, it is highly effective and a de-facto industry standard filter.

3.3.1 Extended Kalman Filter

Assume a non-linear system is given by the following set of equations:

xk = f(xk−1, uk−1) + wk−1

zk = h(xk) + vk

where xk is the system state, uk is the system input, wk and vk are zero-mean gaussian

process noise and measurement noise vectors respectively, and zk is the measurement.

12

It is assumed the process and measurement noise are uncorrelated and their covariance

matrices are given by the following:

Q = E[wkw
T
k]

R = E[vkv
T
k]

Let the state estimates be given by x̂k and define a state error covariance matrix:

Pk = E[(xk − x̂k)(xk − x̂k)T]

The filter is initialized with some initial state estimate x̂0 and initial state error

covariance matrix P0. It can be shown that the optimal state estimate at step k is

given by the following equation:

x̂k = x̂fk +K(zk − h(x̂fk))

where:

x̂fk = model prediction

K = kalman gain

It is interesting to notice that this is a balance between the model prediction

and the error between the model prediction and the measurement. The second term

K(zk − h(x̂fk)) is called the innovation term. The optimal model prediction is given

by the following equation:

x̂fk = f(xk−1, uk−1)

And the kalman gain is calculated using the following equation:

K = P f
kH

T (HP f
kH

T +R)−1

13

The P f
k matrix is defined as the prediction error covariance matrix and H is the

linearization of the measurement model about the state predicted by the model:

P f
k = E[(xk − x̂fk)(xk − x̂

f
k)
T] = ΦPk−1Φ

T +Q

H =
dh

dx
|x̂fk

where Φ is the error propogation matrix:

Φ =
df

dx
|x̂k−1

Finally, the current state error covariance matrix is computed to be used during

the next estimation:

Pk = (I −KH)P f
k

3.3.2 Kalman Filter Non-Linear Process/Measurement Noise

Suppose the system model was given by the following equation:

xk = f(xk−1, uk−1, wk−1)

zk = h(xk, vk−1)

Linearizing both models about zero noise:

xk ≈ f(xk−1, ûk−1, 0) +
df

dw
wk−1

zk ≈ h(xk, 0) +
dh

dv
vk

This is the same set of equations as described above except the process noise and

measurement noise is given by df
dw
wk−1 and dh

dv
vk respectively with the following new

14

covariances:

Q = (
df

dw
)E[wkw

T
k](

df

dw
)T

R = (
dh

dv
)E[vkv

T
k](

dh

dv
)T

3.3.3 Kalman Filter Input Noise

Suppose the true input to the system u = û+n where û is the desired/observed input

and n is random gaussian noise n ∼ N (0,Σu). Then:

xk = f(xk−1, uk−1) = f(xk−1, ûk−1 + n)

Linearizing about ûk−1:

xk ≈ f(xk−1, ûk−1) +
df

du
|ûk−1

n

Defining Gk = df
du
|ûk−1

, the equation above becomes:

xk ≈ f(xk−1, ûk−1) +Gkn

Gkn is now zero-mean gaussian process noise. The covariance matrix of Gkn is given

by the following:

E[(Gkn)(Gkn)T] = GkΣuG
T
k

3.3.4 Adaptive Kalman Filter

The EKF assumes constant measurement noise covariance matrix R but in many ap-

plications the measurement noise often varies over time. In response, many adaptive

kalman filters have been developed which automatically update R based on a window

of past model predictions and measurements. Almagbile et al. employ the follow-

ing “last m-residuals” (i.e. difference between estimates and actual) based update

15

equations [17]:

R̂k = Bk + CPkC
T

v̄k = zk − Cx̂k

Bk =
1

m

m∑
i=1

vk−iv
T
k−i

This method seems promising for AprilTag related noise measurements where

empirically the noise grows as the partner tailsitter drifts further away or is not

directly facing the camera.

4 Method

This section describes how the simulation capabilities were enhanced to support a

high fidelity simulation of localization and maneuvering. Then, it describes how

the tailsitter hardware was modified to support an onboard computer to run the

localization software.

4.1 Integrating a Visual Fiduciary System: AprilTag

AprilTag was the chosen visual fiduciary system due to it’s fast speed and convenient

ROS wrapper. The first step to enabling the simulation was adding AprilTag targets

to the tailsitter gazebo model as well as a camera for taking images and computing

pose measurement. This was done with the help of UTIAS summer student Jason

Wang. Four tags from the “tag36h11” family were chosen (36 bits, hamming distance

11). Two large targets (10cm X 10cm) and two small targets (5cm x 5cm) were added

to the front-facing side of the wings. They were arranged such that as the distances

between the viewing camera and the tailsitter decreases (e.g. the two tailsitters

get closer together), the large targets will not fit in the image frame and the pose

estimation can switch to using the small targets. A picture of the old model and

new model is shown in figure 16. Finally, a ROS node was written that publishes

16

the tailsitter to camera transform to the /tf topic, which means measurements can

be directly converted to the tailsitter frame with the tf2 ROS package.

(a) Original tailsitter model.

(b) New tailsitter model with AprilTag targets and a camera.

Figure 16: Tailsitter gazebo model before and after modification

Next, the “apriltags2 ros” ROS package was downloaded and the launch file was

modified to launch the apriltags detection nodes, while feeding in the correct topics

containing camera information and camera images. The end result if this wiring is

shown in figure 17. On the left, one can see the tag detections, including their position

and orientation relative to the base link tailsitter, in RVIZ.

4.2 Implementing Kalman Filtering

In general, the measurements were very highly accurate when the tailsitters were

< 30cm apart and the tailsitters were directly facing each other, but any further,

and although the targets were always detected, the measurements became noisy,

17

Figure 17: (Left) RVIZ showing tag pose detections. (Right) Gazebo simulation.

particularly when the tag was rotated about its normal and lateral axis. Ideally any

global rendezvous system does not have to precisely position the tailsitters to such a

close proximity. Additionally, when the tailsitter was maneuvering, the measurements

became noisy. A third party Kalman filter implementation on Github written by

Markus Herb was used to filter AprilTag measurements [18]. The original kalman

filter implementation was modified to propagate noise in the system input, and to

take a dt term when computing the model prediction. The process and measurement

models are desribed in section 5. The noise covariance matrices are enumerated in

appendix A.

4.3 Improving the Hummingbird Platform Software Suite

Although unrelated to the primary goals of this thesis, the Hummingbird platform

was improved to add functionality, remove bugs, and reduce complexity, some of

which is talked about here.

To enable more complicated trajectories to create more interesting and difficult

test cases to test the robustness of the estimation, the PX4 “ts path planner” mod-

ule was modified to include a “raw” mode. Previously, “ts path planner” generated a

linear path from the start position to the end position, creating it’s own velocity pro-

18

file, and publishing intermediate setpoints. In raw mode, setpoints published through

ROS on the “/mavros/setpoint raw/local” topic are sent and executed directly and

without modification. MATLAB and the ROS interface package was used to generate

and publish setpoints to track a circle [19].

Previously, a software application called QGroundControl (QGC) was used to

connect a game controller to the Hummingbird vehicle to issue commands [20]. QGC

also provided visualizations of live-streamed data, but in practice that feature was

not used. It was a buggy software that had to be independently compiled and run.

QGC was removed and a custom ROS node was built that takes joystick input and

sends commands such as arm, takeoff, land and disarm to the Hummingbird vehicle.

4.4 Mechanical Modification of the Hummingbird

To enable vision, an onboard computer and camera needed to be added to the

hummingbird tailsitter. The mechanical design of the Hummingbird was therefore

modified in Solidworks to add mounting points for the chosen onboard computer

and camera. The Odroid XU4 was chosen as the onboard computer because of its

lightweight and relatively strong processor. The Intel Realsense R200 camera was

chosen because of its light weight and large developer community. The inner ribs of

the tailsitter were modified to add a bottom support beam, and the original mounting

plate was lengthened to make room for a camera. The Solidworks assembly of the

modified Hummingbird center is shown in figure 18. The Pololu 5V 4A D24V50F5

regulator was used to power the Odroid from the battery. The new parts were 3D

printed/laser-cut/ordered and integrated and the result is shown in figure 19. Finally,

the controllers were retuned to achieve achieve stable hover; the gains are listed in

table 1.

A ”mock tailsitter” was also built with AprilTags in the same configuration as the

simulated partner tailsitter as well as vicon markers for benchmarking. This mock

tailsitter is shown in figure 20.

19

Gain ζp,xyz τp,xy τp,z kω,pitch kω,roll kω,yaw τω,pitch τω,roll τω,yaw
Value 1.4 0.6 0.4 3 5 12.5 0.06 0.15 0.044

Table 1: New controller gains.

Figure 18: Front and back views of the Solidworks assembly of modified Hummingbird
center.

(a) Front. (b) Back.

Figure 19: Modified mechanical design of tailsitter with mounted Odroid XU4 and
realsense camera.

Figure 20: Mock tailsitter to test localization estimation.

20

5 System Modelling

It is assumed that one tailsitter will maintain a hover flight while the other maneuvers

to perform docking. The tailsitter that is viewing and estimating the position of the

other tailsitter is named “base link” and the other tailsitter “partner.” The base link

and partner are modelled as point masses and assigned frames 1 and 0 respectively.

The setup is shown in figure 21. The partner frame is modelled as an inertial frame,

e.g. as having 0 linear and angular velocity and the base link frame with some relative

velocity v, acceleration a and angular velocity ω. The goal is to track frame 0 with

respect to frame 1.

Figure 21: Point mass model of the partner and base link tailsitters. The partner
tailsitter is modelled as an inertial frame. The gravity vector is assumed to point in
the direction of −z0.

5.1 System Parameterization

Define a state variable x:

x =


o10

v

η

ba

 (1)

where o10 is the position of frame 0 with respect to frame 1, v is the velocity of

frame 1 with respect to frame 1, η
.
= [φ, θ, ψ] is the roll, pitch, yaw of frame 1 with

respect to frame 0, and ba is the IMU accelerometer bias estimate.

21

Next, define a system input u:

u =

a
ω

 (2)

where a = a11 is the acceleration of frame 1 with respect to frame 1 and ω = ω1
1 is

the angular velocity of frame 1 with respect to frame 1.

5.2 Process Model

Begin by summing the vectors from frame 0 to frame 1 and frame 1 to frame 0 which

must add up to 0:

o01 +R0
1o

1
0 = 0

ȯ01 + Ṙ0
1o

1
0 +R0

1ȯ
1
0 = 0

ȯ10 = R1
0S(ω0

1)o01 −R1
0ȯ

0
1

Identifying v = v11 = R1
0ȯ

0
1 as the velocity of the base link in its own frame and

w0
1 = R0

1w
1
1 the above equation becomes:

ȯ10 = −S(ω1
1)o10 − v + no (3)

where an empirically set gaussian noise vector, no, with covariance Σo is added at

the end. This equation governs the dynamics of linear motion of frame 0 with respect

to frame 1. The dynamics of η is derived next. The rate of change of the roll, pitch,

and yaw as a function of frame 1’s angular rate is described by the following equation:

ω =


u

v

w

 =


φ̇

0

0

 + (Rx,φ)T


0

θ̇

0

 + (Ry,θRx,φ)T


0

0

ψ̇



22

Rearranging for η̇:

η̇ =


u cos θ+w cosφ sin θ+v sin θ sinφ

cos θ

v cosφ− w sinφ

w cosφ+v sinφ
cos θ

 + nη (4)

where an emperically set gaussian noise vector nη with covariance Ση is added at

the end. The derivative of velocity is simply the acceleration:

v̇ = a11 + nv (5)

where nv is an empirically set gaussian noise vector with covariance Σv. Finally,

the IMU accelerometer bias is modelled as a random walk following Kelly et al. [21]:

ḃa = naw (6)

where naw is a gaussian random variable with mean 0 and some covariance Σaw.

The measured IMU angular velocity and angular acceleration are:

ωm = ω1
1 + nω (7)

am = a11 −R1
0~g + ba + na (8)

where nω and na is zero-mean gaussian noise with covariances Σω and Σa respec-

tively, and ~g =
[
0 0 g

]
is the gravity vector. Note that any gyroscope bias is

ignored.

This fully describes the continuous time process model. Below, the relevant jaco-

bians are provided for completeness.

23

The derivatives with respect to the state are as follows:

df

dx
=


−S(ω1

1) −I3x3 03x3 03x3

03x3 03x3
dv̇
dη

03x3

03x3 03x3
dη̇
dη

03x3

03x3 03x3 03x3 03x3


where:

dv̇

dη
=


0 −gc(θ) 0

gc(θ)c(φ) −gs(θ)s(φ) 0

−gc(θ)s(φ) −gs(θ)c(φ) 0

 , dη̇dη =


s(θ)(vc(φ)−ws(φ))

c(θ)
wc(φ)+vs(φ)

c(θ)2
0

−wc(φ)− vs(φ) 0 0

vc(φ)−ws(φ)
c(θ)

s(θ)(wc(φ)+vs(φ))
c(θ)2

0


The derivatives with respect to the inputs are as follows:

df

du
=


03x3

dȯ10
dω

I3x3 03x3

03x3
dη̇
dω

03x3 03x3


where:

dȯ10
dω

=


0 −(o10)z (o10)y

(o10)z 0 −(o10)x

−(o10)y −(o10)x 0

 , dη̇dω =


1 s(θ)s(φ)

c(θ)
c(φ)s(θ)
c(θ)

0 c(φ) −s(φ)

0 s(φ)
c(θ)

c(φ)
c(θ)



5.3 Measurement Model

A measurement starts with a camera image of a tag. The camera is mounted on the

base link tailsitter and the tag is mounted on the partner tailsitter. Assign frame 2

to the tag and frame 3 to the camera. This is shown in figure 22. It is assumed that

the camera to base link transformation is known (o13 and R1
3) and the tag to partner

24

transformation is known (o02 and R0
2). The output of the AprilTags software is the

camera to tag transformation, or o32 and R3
2. Then the following equations define the

relationship between the measurement and state:

R1
0 = R1

3R
3
2R

2
0 + nηm

o10 = o13 +R1
3o

3
2 + (−R1

0o
0
2) + nom

where nηm and nom are gaussian noise vectors added to the measured values of

the orientation and position respectively with covariance matrices Σηm and Σom.

Figure 22: Tag Measurement

6 Results

Localization was tested in simulation by hovering the tailsitter approximately 1.5m

away, moving forward and stabilizing at a hover position approximately 0.5m distance,

and then moving back. The pose estimate graph results can be found in appendix B.

Localization was also tested on hardware by hovering the tailsitter 0.5m away and

1m away. The pose estimate graph results can be found in appendix C and D respec-

tively. One important observation of the differences between hardware and simulation

is that on hardware there is substantial time delay of approximately 350ms between

ground truth pose of the partner and the measurement by Apriltag. Nevertheless,

ignoring the time delay and using vicon as ground truth to quantify accuracy, ta-

bles 2 and 3 enumerate the largest errors of the raw tag measurements and the filter

25

Apriltag Measurement Error Filter Estimate Error
x 3cm 26cm
y 1cm 9cm
z 2cm 2cm

roll 0.03rad 0.10rad
pitch 0.05rad 0.10rad
yaw 0.06rad 0.08rad

Table 2: Largest errors during 0.5m hover.

Apriltag Measurement Error Filter Estimate Error
x 5cm 16cm
y 4cm 8cm
z 4cm 7cm

roll 0.03rad 0.09rad
pitch 0.10rad 0.20rad
yaw 0.10rad 0.15rad

Table 3: Largest errors during 1m hover.

output (outlier measurements are qualitatively identified and ignored though). It is

important to note that the biases between the stationary Apriltag measurement and

vicon measurement was not taken into account. In this respect, the measurements are

actually better than what is reported in the table, and qualitatively one can observe

the profile over time of the Apriltag measurements mirrors the Vicon measurements

well. Instead, the important thing to note is that a) as expected, the errors grow

as distance increases and b) the filter makes the estimate worse. Finally, the tables

don’t portray the existence of outliers which are particularly prevalent in the pitch

measurement which we qualitatively explain here. At 0.5m, there were noise spikes

of about 0.15rad magnitude in pitch, and at 1m, the magnitude of noise spikes was

about 0.3rad.

Ignoring time delays, on hardware, the position of the partner was accurately

estimated to within ∼ 3cm3 radius sphere at 0.5m and ∼ 7cm3 radius at 1m. It

would likely be even more accurate if a calibration step to remove the bias between

the measurement and ground truth is implemented first.

26

Figure 23: Taking pose measurements while the tailsitter hovers infront.

7 Discussion

7.1 Performance in Simulation

The filter position estimate was largely the same as the measurement due to a high

accelerometer noise covariance matrix, but the filter did add high frequency noise.

The filter’s largest benefit was improving the orientation estimate by cutting down

the process noise by a factor of about two. For example, during hover at 1m, the

pitch estimate went from +/- 0.04 radians to +/- 0.02 radians. At the same time,

it was able to follow the pitch profile as the tailsitter maneuvered toward and away

from the partner tailsitter.

7.2 Performance on Hardware

On hardware, in all experiments, the quality of the measurements degraded substan-

tially. Firstly, the AprilTags software output at 24Hz instead of the camera image

rate of 30hz. The Kalman filter not only did not improve the pose estimate, but

degraded it further. It worsened the time delay, it added extremely bad transients

during estimate convergence, it added high frequency noise in the position estimate,

and it worsened the orientation estimate. It’s only positive effect was to smooth the

orientation estimates and mitigate the effects of noise spikes. For example, at 1m, a

large noise spike at about 34s can be seen, suggesting the relative pitch at about 0.35

radians or 20 degrees, but the filter rejected that.

27

Figure 24: TF2 frames tree visualization. camera to bundle1 is output at 24Hz.

7.3 Model Deficiencies

This section attempts to explain some reasons for the failure of the filter to improve

the estimate by analyzing where the model was deficient.

One possible explanation for the high frequency position noise can be intuitively

understood by understanding how the model would propagate state based on con-

secutive measurements of a tailsitter when it is moving in some direction while ac-

celerating in the opposite direction. A measurement will lead the filter to infer a

certain velocity, which will cause the model to predict it is continuing along the same

path. The accelerometer noise is so high that it might as well be ignored. Subsequent

measurements will then conflict with model predictions.

Another possible reason stems from the empirically observed fast divergence of

the estimate in the absence of measurements (within 500ms). There could be a few

reasons for this. The high accelerometer noise leads to random velocity estimates.

A more likely explanation is the slight accelerometer bias (even though it is being

estimated) builds up in the velocity state.

Although it was not explored in this thesis, another big source of model error will

be when the partner tailsitter is not truly static and upright, but another tailsitter

with non-zero acceleration/velocity and a non-upright orientation.

Finally, another weakness of the model is constraints imposed by the use of euler

angles. The partner needs to be in an orientation that does not have discontinuities

nearby, because the EKF assumes continuous random variables; otherwise it will give

wildly incorrect estimates. For example, if the partner is yawed approximately 180

degrees relative to the base link tailsitter, measurements of yaw will flip between pi

and -pi.

28

7.4 Next Steps

This section lists a set of recommendations for next steps to achieve docking.

• Replace EKF with a LPF.

One could attempt to re-tune the EKF’s noise covariance matrices (e.g. increas-

ing the covariance of the velocity estimate) but as described above, the EKF

model has fundamental flaws. Additionally, in practice, even on hardware, the

raw apriltag measurements are actually quite good. One should remove the

EKF and instead add a low-pass filter.

• Make special considerations for the existence of a time delay in mea-

surements.

• Add C.O.M. offset to model

In practice, non-negligible x and y position biases exist because the C.O.M. is

not perfectly symmetrical. A significant I term in the controllers adds transients.

Ensuring symmetry during mechanical design adds significant constraints to the

design and cannot be perfectly achieved anyway.

• Remove vicon input to the tailsitter and attempt to hover relative to

tag position.

The PID control relies heavily on the accuracy of the velocity measurement

to dampen oscillations. Either a new control system must be implemented, or

velocity needs to be accurately estimated during hover. An intermediate step

might be to reduce the vicon measurement rate and add a delay to test control.

It will also involve ensuring accuracy of model parameters so a significant x, y,

and z bias don’t exist so that the tags stay in view of the camera.

• Change the Intel Realsense R200 Camera

The Intel Realsense R200 camera often crashed due to USB powering issues

from the Odroid. Other lightweight cameras should be tested for reliability and

used instead.

29

8 Conclusion

In this thesis, localization capabilities were added to the Hummingbird tailsitter.

First, a high fidelity simulation using gazebo was developed by updating the PX4

tailsitter model with cameras and AprilTag targets. Next, the apriltags2 ros ROS

package was integrated to capture pose measurements of tags using the camera and

measurements of a partner tailsitter were calculated. Then, the pose measurements

were filtered using an EKF. It was shown that the EKF improves the pose measure-

ments in simulations. Then, the Hummingbird was mechanically redesigned to add

an onboard computer and camera. The controllers were re-tuned and localization

was tested again. It was shown that the measurements become noisier and the EKF

actually further degraded the estimate, but that by-and-large, the raw measurements

were still fairly good. The partner tailsitter’s position was localized to about 3cm3

radius sphere at about 0.5m and 7cm3 radius at about 1m. It is likely that with low-

pass filtering, the orientation estimate will become good enough to do docking from

1m away. To continue this thesis, the author recommends to remove the EKF and

add a low-pass filter. Next, try to remove vicon input and maintain a stable hover

from the mock tailsitter at about 0.5m-1m distance. An impressive milestone that

showcases the ability to localize and dock might be visual servoing, that is, having the

Hummingbird follow the mock tailsitter as somebody holds it infront of the camera

and moves it.

30

References

[1] Jack Stewart, “Google tests drone deliveries in Project Wing trials - BBC News,”
2014.

[2] A. Barr and T. Greenwald, “Google Working on New Drone After ‘Wing’ Design
Failed - Digits - WSJ,” 2015.

[3] P. Abouzakhm and I. Sharf, “Guidance, Navigation, and Control for Docking of
Two Cubic Blimps,” IFAC-PapersOnLine, 2016.

[4] R. Oung, A. Ramezani, and R. D’Andrea, “Feasibility of a distributed flight
array,” in Proceedings of the IEEE Conference on Decision and Control, 2009.

[5] R. Oung and R. D’Andrea, “The distributed flight array,” Mechatronics, 2011.

[6] Y. Wu, Design and Implementation of an Unmanned Dual-Rotor Tail-sitter Ve-
hicle: First Steps Towards UAV Autonomous Airborne Docking. Bachelor thesis,
University of Toronto, 2018.

[7] L. Meier, D. Honegger, and M. Pollefeys, “PX4: A node-based multithreaded
open source robotics framework for deeply embedded platforms,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6235–6240,
IEEE, may 2015.

[8] V. Ermakov, “mavros.” Available at http://wiki.ros.org/mavros.

[9] M. Fiala, “ARTag, a fiducial marker system using digital techniques,” in Pro-
ceedings - 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, CVPR 2005, 2005.

[10] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in Proceedings
- IEEE International Conference on Robotics and Automation, 2011.

[11] J. Wang and E. Olson, “AprilTag 2: Efficient and robust fiducial detection,” in
IEEE International Conference on Intelligent Robots and Systems, 2016.

[12] B. Atcheson, F. Heide, and W. Heidrich, “Caltag: High precision fiducial markers
for camera calibration,” in Vision Modeling and Visualization - VMV, 2010.

[13] A. Sagitov, K. Shabalina, L. Sabirova, H. Li, and E. Magid, “ARTag, AprilTag
and CALTag Fiducial Marker Systems: Comparison in a Presence of Partial
Marker Occlusion and Rotation,” 2017.

[14] D. Malyuta, “Guidance, Navigation, Control and Mission Logic for Quadrotor
Full-cycle Autonomy,” master thesis, Jet Propulsion Laboratory, 4800 Oak Grove
Drive, Pasadena, CA 91109, USA, Dec. 2017.

[15] D. Malyuta, “apriltags2 ros,” 2016. Available at http://wiki.ros.org/apriltags2.

31

[16] T. D. Barfoot, State estimation for robotics. 2017.

[17] A. Almagbile, J. Wang, and W. Ding, “Evaluating the Performances of Adaptive
Kalman Filter Methods in GPS/INS Integration,” tech. rep.

[18] M. Herb, “kalman.” Available at: https://github.com/mherb/kalman.

[19] “MATLAB ROS interface.” Available at
https://www.mathworks.com/help/robotics/examples/get-started-with-
ros.html.

[20] “QGroundControl.” Available at: http://qgroundcontrol.com/.

[21] J. Kelly and G. S. Sukhatme, “Visual-inertial sensor fusion: Localization, map-
ping and sensor-to-sensor Self-calibration,” International Journal of Robotics Re-
search, 2011.

32

A Noise Covariance Matrices

State noise covariance matrices:

Σo =


0.1 0 0

0 0.1 0

0 0 0.1

 ,Ση =


0.01 0 0

0 0.01 0

0 0 0.01



Σv =


0.1 0 0

0 0.1 0

0 0 0.1

 ,Σaw =


0.01 0 0

0 0.01 0

0 0 0.01

 ,

Accelerometer/Gyroscope input covariance matrices (multiplied by dt):

Σω =


0.001 0 0

0 0.001 0

0 0 0.001

 ,Σa =


1 0 0

0 1 0

0 0 2


Measurement covariance matrices:

Σηm =


1 0 0

0 1 0

0 0 1

 ,Σom =


1 0 0

0 1 0

0 0 1



33

B Pose Estimate: Simulated Approach Trajectory

(a) Target tailsitter x estimate. (b) Target tailsitter y estimate.

(c) Target tailsitter z estimate. (d) Target to base link roll estimate.

(e) Target to base link pitch estimate. (f) Target to base link yaw estimate.

34

C Pose Estimate: 0.5m Hover

(a) Target tailsitter x estimate. (b) Target tailsitter y estimate.

(c) Target tailsitter z estimate. (d) Target to base link roll estimate.

(e) Target to base link pitch estimate. (f) Target to base link yaw estimate.

35

D Pose Estimate: 1m Hover

(a) Target tailsitter x estimate. (b) Target tailsitter y estimate.

(c) Target tailsitter z estimate. (d) Target to base link roll estimate.

(e) Target to base link pitch estimate. (f) Target to base link yaw estimate.

36

This page was intentionally left blank.

